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Abstract: In this manuscript, a proficient hybrid approach to the system model and the optimum energy 

management of the micro-grid with less cost is proposed. The innovative of the proposed method is the 

consolidation of Tunicate swarm optimization (TSA) and Radial Basis functional Neural Network 

(RBFNN) known as TSA-RBFNN, which enables the decision making along the multi-objective issues. 

Furthermore, the most advantages of the TSA-RBFNN technique is the cost-effective power production of 

the micro-grids (MGs) including effectual use of renewable energy sources (RESs) without lose the 

obtainable energy. The technique is concerned with more mathematical optimization issues, which involves 

an objective function that should be optimal concurrently. The TSA algorithm improves the micro-grid 

structure at minimal fuel cost to carry out the necessary load requirement by utilizing the micro-grids inputs 

such as wind turbine (WT), photovoltaic (PV) array, micro turbine (MT), energy storage system (ESS) and 

related cost operation. In TSA-RBFNN technique, RBFNN learning phase is used to forecast the load 

requirement. In terms of the predicting load requirement, minimal annualized fuel cost properties, cost 

operation, replacement cost is minimized with every successive point of the TSA-RBFNN technique. The 

efficiency of the TSA-RBFNN technique is analyzed by likened to the other existing techniques like COA-

RNN and BFA-ANN. The comparison outcomes prove the magnificence of the TSA-RBFNN technique; 

also corroborate its efficient to determine the complex. 

 

Keywords: Wind turbine, Micro turbine, Operation cost, Photovoltaic, Tunicate swarm optimization, 

Radial Basis functional Neural Network 

 

 

1.  INTRODUCTION 
 

The applications of RESs have pointed out in the past years; 

RES are minimizing the green house gas emissions and fuel 

usage that are used to contribute in the Distributed 

Generation (DG) enhancement to highlight the aggressive 

solution for the future. It means power system connected 

grid [1, 2]. Thus they can generate electricity with minimal 

environmental impacts, and easy to install, highly reliable 

and efficiency increases. In addition, owing to inherent 

nature of both renewable sources with energy utilized by 

load, a grid connection is required. Under the circumstances, 

the energy storage systems (ESS) like flywheels, super 
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capacitor, batteries etc [3]. And energy management system 

(EMS) is proposed to enhance system stability and its 

efficiency. Generally, microgrid (MG) is powerful enough 

to work in grid-connected as well as stand-alone systems. 

Those are illustrated as less voltage systems consisting of 

loads, storage device and distributed generation units, which 

directly coupled with mains in a single point of common 

coupling (PCC) [4]. 

Grid connection in RES can be used to achieve a set of 

predefined objectives, like reducing grid operating costs or 

increasing revenues in line with DG auction and electricity 

market prizes. EMS is responsible for controlling power 

flows between components [5-7]. In addition, the EMS is 

based on the grid, the power framework in specific the grid 

elements energy management potential must be taken into 

account (control over which sources, loads and storage 

components). When the power design together with 

predefined objectives is known, EMS model could carried 

out using various approaches [8, 9]. For example, in an 

EMS it is modelled using local forecasting and stochastic 

dynamic programming (SDP), which is a grid connected 

MG. Furthermore, the EMS model focuses on controlling 

the EMS with a predictive control mechanism for 

compensating the hourly distortions of the energy plan 

predicted at grid connected micro-grid [10-12]. 

Battery energy storage (BES) is typically used for solar, 

wind, turbine power systems; it overcomes the sluggish 

power requirement. Nevertheless, it is not able to dissipate 

large power fluctuations when affected by higher frequency 

[13, 14]. Integrating the application grid with distributed, 

proficient and dependable DG systems without much 

investment is still a major challenge. RES have intermissive 

and approximately fluctuating power, which in turn a 

primary issue when such source of energy turn a major 

component of overall grid power generation. This problem 

can be overcome in principle by massive savings [15]. To 

overcome the above mentioned issue, the energy saving 

combination with various phenoms is utilized. The energy 

storage system is a greater combination of super capacitor 

(SC) and battery system. Battery energy storage is used to 

overcome sluggish changing power requirement, whereas 

SCs handles transient power fluctuations [16, 17]. To 

prolong the life of the battery and SC, they are not highly 

charged or discharged. To manage energy reserves at safe 

operating conditions the EMS is mandatory, in which can 

efficiently use energy storage and defend against excessive 

charge or excessive discharge. Here, storage is highly 

expensive for using large scale; so many researches are 

work to develop low cost and highly efficient storage 

devices [18-20]. We develop to research optimal control 

strategies for energy storage system in grid connection.  

In this manuscript, a proficient hybrid approach to the 

system model and the optimum energy management of the 

micro-grid along less cost is proposed. The innovative of the 

TSA-RBFNN method is the consolidation of Tunicate 

swarm optimization (TSA) and Radial Basis functional 

Neural Network (RBFNN) known as TSA-RBFNN, which 

enables the decision making along the multi-objective 

issues. The remainder of this manuscript is designed as. 

Segment 2 defines recent research works. Segment 3 

portrays problem formulation. Segment 4 delineates the 

analysis with system configuration of micro-grid connected 

system for optimum energy management. Segment 5 

explains the experimental results. Finally, segment 6 

concludes the manuscript.  

 

2. RECENT RESEARCH WORK: A BRIEF REVIEW  
 

Several investigation works have already existed at the 

literature, which is depending on the energy management in 

grid connected system with different techniques and aspects. 

Here, certain works are reviewed. 

N. Liu et al. [21] introduced a multiple-level energy 

management system with power requirement was advanced 

for the Combined heat and power and micro-grid (MG). An 

optimization modeling of micro-grid operator (MGO) was 

designed, which includes gas cost, the revenue from the 

energy sale to the consumer, high electricity to utility grid. 

The combined heat and power system can be enabled as a 

hybrid manner, which were followed the electric load 

(FEL), followed the thermal load (FTL). An optimization 

model was designed with the use of power consuming, the 

cost of buying electricity, heat as well as convenient amount 

of indoor temperature. D. Lifshitz and G. Weiss [22] have 

suggested three optimal solutions for charging and 

discharging methods for the increasing the energy at grid 

connected storage system. The three optimal methods were 

generated for three versions of the optimization issues. (a) 

The system contains storage of super capacitor, which has 

been control in continual time. (b) The system contains 

battery type storage or super capacitor and has been 

controlled at a separate time. (c) The system has the storage 

type of battery and has been controlled in continuous time.   

D. A. Aviles et al. [23] have implemented the concept of 

less complexity Fuzzy Logic Controller in EMS for grid-

connected through MG owing to the RES and storage 

capability. The main aim of this advanced technique was to 

reduce the grid power fluctuations due to the battery storage 

system. The advanced method was employ MG and State of 

Charge (SOC) both were high/low or maintained power 

absorbed or delivered. The design parameters were 

controlled or adjusted to improve the pre-defined 

characteristics of the MG.  

U. Manandhar et al. [24] have developed a novel EMS 

to the grid connected hybrid energy storage along the super 

capacitor, battery subject to various operating conditions. 

The benefits of the new EMS were effectual sharing of 

power among various ESS, load disturbances, accelerated 

direct current link voltage controlling for generation and 

dynamic power sharing amid the grid in terms of battery 

state of charge (SOC) and battery, minimize the rate of 

over- charging/discharging of battery current according to 
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the steady state with fluctuations of transient power, to 

enhance the power characteristics phenomenon in AC grid 

as well as seamless mode transitions. 

 H. Wu et al. [25] have implemented the concept of the 

photovoltaic control strategies, grid-connected inverter with 

the battery. The new control scheme of EMS to DC bus was 

implemented to avoid frequent charging or discharging the 

battery. A linear control function was utilized in external 

voltage control of the battery to prevent the battery from 

switching back and forth amid the operating position and the 

halting position. The example proves the accuracy of the 

system modeling, control techniques, reaches the 

transmitting power attached to the stationary grid. This 

scheme generates a reference to the photovoltaic system 

participating in power dispatch.  

P. Malysz et al. [26] have demonstrated the online 

optimum power control scheme to the function of energy 

storage in grid-connected through microgrid (MG). The 

method depending on the mixed-integer-linear program 

optimization designed for the rolling horizon, while 

evaluating the future electricity consumers including 

renewable energy generation. The objective of the 

performance involves utility-specific objectives related to 

electricity utilization cost, battery operation costs and peak 

requirement and load softening. A strong counter-design of 

the optimization issues has been advanced to manage 

uncertainty in energy requirement/generation forecasting at 

compute a proficient way. 

 J. Pascual et al.  [27] have implemented the designing 

concept of an EMS depend upon less complexity Fuzzy 

Logic Control (FLC) to grid power profile smooth of grid-

connected MG, battery ESS, RESs. The MG power predicts 

error and the battery state of charge of the new scheme 

enables the appropriate grid power controlling. The benefits 

of the new scheme were to reduce the fluctuations, power 

peaks at the power profile exchange along the grid while 

retention the energy saved at the battery within safe 

limitations. The new energy management scheme using 

generation as well as required predicting to expect the future 

performance of MG. 

 

2.1. Background of the Research Work 

 

The review of recent investigation work shows that the 

energy management in the grid connected RESS is an 

important contribution factor. The EMS design depending 

upon grid connected, RES including ESS. The energy 

storage devices like battery, super capacitor, state of charge 

etc. to enhance the power demand prediction. Integrating the 

application grid with distributed, proficient and dependable 

DG systems without much investment is still a major 

challenge. To overcome the above mentioned issue, the 

energy saving combination with various phenoms is utilized 

such as Fuzzy Logic Control (FLC), combined heat and 

power, SOC etc. FLC is to clarify the grid power profile of 

grid-connected MG together with battery ESS, RESs. 

However, it is not able to dissipate with the large power 

fluctuations when affected by high frequency. To manage 

energy reserves at secure operating condition, the EMS is 

mandatory, which can successfully use energy storage and 

defend against excessive charge or excessive discharge. The 

advanced EMS uses generation with required predicting to 

expect the future electricity requirement. At literature, to 

overcome this problem does not more works are introduced 

and the revealed works are inefficient. Such problems and 

constraints have been inspirational to do these research 

works. 

 

3. PROBLEM FORMULATION 

 

The major purpose of the proposed work as represent at the 

designing and modeling of grid-connected hybrid energy 

system. The integration of photovoltaic system, wind 

turbine, micro turbine, energy storage system denotes the 

hybrid renewable energy system. To check the cost-

effective of the TSA-RBFNN method, the TSA-RBFNN 

approach finds the optimum number of HRESs. The 

electricity requirement of the region has been fully meet 

while minimum energy costs of the system are also reduced 

under the constraints. The brief explanation of the objective 

function, operational scheme, execution of the proposed 

algorithm is given below. 

 

3.1. Formulation of the objective function 

 

The main objective functions in the proposed hybrid 

renewable energy resources, reduction of annual cost of the 

overall system. The overall capital cost, replacement cost, 

cost of operation with maintenance, grid sale, purchase 

power costs are the factors, which include in the total 

system cost. These costs involve the installing whereas 

other costs involve the capital cost [28]. While satisfying 

other constraints the system with less annual cost is deemed 

better one. The minimized objective function is as denotes 

as blow follows, 

 

][)min( ESSESSMTMTWTWTPVPV cpcpcncnac              (1) 

 

where, the total annual cost of photovoltaic, wind turbine, 

micro turbine, energy storage system are denoted as CPV; 

CWT; CMT and CESS and AC is denoted as the system 

annual cost. Annually, overall price of electricity sold for 

grid ($/yr). The several components which are annual 

capital cost, annual operational, annual replacement cost 

comprises each component in the annualized cost. To posses 

all kind of costs the micro turbine cost analysis is also 

delineated. The below expression denotes the AC of MT 

CMT includes few components as follows, 
MT
f

MT
repac

MT
capacMT cccc  )()(                                           (2) 

 

where CMT (f) implies operational (fuel) cost, the annual 
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replacement cost is denoted as CMT, CMT (f) refers 

operational (fuel) cost and the annual capital cost is 

represented as CMT. 

 

3.2. Annualized capital cost 

 

The capital cost of the components involves the components 

of install and purchase cost. This chapter is mentioned about 

every component like photovoltaic, wind turbine, micro 

turbine, energy storage system the annualized capital cost of 

these components are computed using CRF [29]. To 

compute the current value of money is the CRF ratio. The 

overall micro turbine system is revealed as below, 

 

),())( CRFcc MT
cap

MT
capac                                                    (3) 

 

where, the lifetime indicates β years, rate of interest 

indicates α then the wind turbine initial capital cost is 

exhibited as CMT Cap. Therefore the CRF is evaluated as 

follows below, 
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3.3. Annual replacement cost 

 

The annual replacement cost of wind turbine implicates 

replacement cost of wind turbines lifespan. The expression 

of CMT the annual value of overall replacement cost is 

described as below, 

 

1)(
)1(

)1(
),(







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
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where, I specify lifespan of micro turbine system at years 

and the component replacement cost represents CMT rep. 

The expression of the remaining power is given below, 

 

3.4. Operational strategy 

 

Due to the environmental issues, the power generated from 

the photovoltaic panels as well as wind turbine is placed in 

first priority than micro turbine in the operational strategy. 

The power management is carried out through the given 

operational strategy at the proposed grid-connected hybrid 

system [30]. At the initial stage of this strategy, when the 

power generated by photovoltaic, wind turbine are sufficient 

and higher than load requirement, the remainder power 

could be transferred to the grid, which could be supplied 

directly by the solar and wind power, it is demonstrated in 

the equation below, 

 

))()()(()( TpTpTpTp LWTPVgs                               (6) 

 

here, P defines power supplied to the grid. The operational 

strategy at the second stage, when the Pgs greater than Pmax 

gp (maximum grid sales ability) the excessive power is 

discharged and it is expressed below, 

 
Max
gpLWTPVd pTpTpTpTp  )()()(()(                    (7) 

 

where, Pgp signifies amount of power supplied to the grid. 

At the third level of the operational strategy, the power from 

photovoltaic panels is not sufficient when the load could be 

supplied directly through the grid power that is exhibited in 

the equation below, 

 
Max
gpL pTp )(                                                                     (8) 

 

The operational strategy at the fourth stage wind turbine 

power while the power from the photovoltaic panels and the 

wind turbine are insufficient when the micro turbine is start 

and load supplied by micro turbine, grid and photovoltaic. 

The operational strategy at the fifth stage within a maximal 

limitation of grid sale ability, the remaining power sold to 

the grid. 

 

4. ANALYSIS AND SYSTEM CONFIGURATION OF 

MICRO-GRID CONNECTED SYSTEM FOR 

OPTIMUM ENERGY MANAGEMENT  

 

In this manuscript, with MG connected systems a proficient 

control method is proposed for optimal energy management. 

The proposed technique is TSA-RBFNN technique where 

the proficient control strategy is the consolidation of TSA 

and RBFNN [31]. The systems of photovoltaic, wind 

turbine, micro turbine, energy storage system are the 

compilation of micro-grid connected system. The power 

flow control amid the source of energy and the grid is the 

primary objective of TSA-RBFNN method. This can be 

satisfying the required power grid from the renewable 

energy power with grid operator. The power required for the 

grid operator is provided as a reference to the MG input 

[32]. The full power reference amid the system parts is 

accurately distributed through the TSA-RBFNN method. To 

continuous perform in steady as well as stable output power, 

the renewable power system units are firmed and allowed by 

the battery, which performs as the source of energy. Figure 

1 portrays the system configuration of the micro-grid 

connected system. 

Figure 1 portrays the dispatchable resources termed as 

micro turbine, the non-dispatchable resources like 

photovoltaic, wind turbine, RESs. As seen from this Figure, 

the battery defines energy storage device. To micro-grid 

system, the TSA-RBFNN method is utilized to define the 

EMS and also access the total production of cost operations 

[33]. The micro-grid energy management is analyzed at the 

grid-connected method to the distinct function. At the 
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initial, the control tasks are executed after that micro-grid 

has been able to plan with the proper ratings. During the 

micro-grid process the load requirement satisfied all time 

subject to grid mode. Optimization algorithms are used to 

express the objective of micro-grids to achieve the optimal 

function. The power produced from the non-dispatchable 

resources like photovoltaic, wind turbine is used the energy 

storage with natural benefit. The dynamic power, operation 

condition of energy storage system, dispatchable units is 

deemed as the control aspects utilized to define the energy 

management scheme [34]. In the TSA-RBFNN technique, 

the objective function is analyzed in terms of annual capital 

cost, annual replacement cost, operational cost of the micro-

grid system. Here, the procedure with optimum intensity of 

control units are estimated in provided time. The optimum 

cost of power controlling is the primary objective of the 

TSA-RBFNN technique. So, the aim of the micro-grids is to 

minimize and maximize revenues when the optimal function 

is attained. The TSA and RBFNN methods are described 

below. 

 

DC-DC 

Converter

AC-DC 

Converter

DC-DC 

Converter

DC-DC 

Converter

DC-DC 

Converter

PV

WT

Battery

MT

Power Grid

Load

 

MG 

Connected 

System Using 

TSA-RBFNN

 
Figure 1: System configuration of MG with proposed TSA-

RBFNN Technique 

 

4.1. Aim of Adopting the Proposed TSA Technique 

 

TSA is a meta-heuristic optimization algorithm it follows jet 

propulsion with swarm behavior of tunicates when the 

process of navigation and foraging. Tunicate contains 

capacity to identify the location of food source at the sea 

[35]. Nevertheless, nothing is known about the food source 

in a given search location. In this manuscript, to detect the 

food source two tunicate behaviors are applied, that is 

optimal. Such behaviors are known as jet propulsion 

together with swarm intelligence. To mathematical model of 

jet propulsion behavior, a tunicate must satisfy three 

different terms. They are, neglect the conflicts among the 

search agents, movement towards the position of best search 

agent, remain near to the best search agent. The swarm 

behavior would update the other search agent positions 

about the optimum solution.  In this manuscript, TSA 

algorithm is applied to obtain the optimal mean error value 

so that using this, the speed and torque of the motor can be 

controlled. Initially, error signals are initialized and 

randomly generated the gain parameters of the proportional 

integral controller.  

 

4.1.1. Step by Step TSA process 

 

Step 1:  Initialization of population 

Initialize the tunicate population pP which is generated 

randomly in the search space. 

 

Step 2: Select the initial parameters with maximal count of 

iterations. 

 

Step 3: Fitness Evaluation 

Compute every search agent fitness value. To get minimal 

error function, the given equation is utilized to achieve the 

optimal pulses,  

 

 EFitness min                                                        (10) 

 

Based on the fitness value, the minimum error value is 

denoted as (E). 

 

Step 4: After calculating the value of fitness, better search 

agent is examined at the following search space 

 

Step 5: Updating the position of each search agent utilizing 

the equation (1) 

 

12

)1()(
)1(

C

xPxP
xP

pp

p



                                        (11) 

 

Step 6: New Position Updation 

Consider the given equation to generate the new solution 

utilizing crossover as well as mutation operator, 

 

VRNP                                                                        (12) 

 

here, reflection as R, visibility as V. Crossover and mutation 

operator improves the new solution update to obtain an 
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optimum global solution. 

 
 

Figure 2: Flow chart of TSA 

 

Step 7: Modify the updating search agent beyond the 

boundaries of provided search location. 

 

Step 8: Calculate updating the fitness value of search agent 

if it is best solution than the existing optimum solution.   

 

Step 9: If the stopping criteria is fulfilled, then stop the 

algorithm. Else, repeat steps 5–8.  

 

Step 10: Return better optimum solution that is acquired so 

far.           

                                                                      

4.2. Prediction of Load Demand Using RBFNN    

  

RBFNN is an artificial neural network that uses radial basis 

functions as activation functions in the field of mathematical 

modeling. Input layer is the first layer, and it is consisted of 

source node to the input data [36]. Single hidden layer in 

network is the second layer that is carried out the radial 

basis operations. The nonlinear transformation is used by 

such functions from the input layer to the hidden layer. The 

output layer is the third layer. The network’s output layer is 

a linear combination of inputs and neuron parameters radial 

basis functions. Here, RBFNN is trained with the suitable 

input time intervals of the day due to target power 

requirement. To implement the proposed technique, input 

variables selection for every node refers to first layer then 

the output is calculated using Gaussian membership 

function. 

 

Step 1: The Input Vector 

At the input layer of the network, the input vector a is used. 

In the TSA-RBFNN technique, the time interval T
represents network input, load requirement represents 

network output. The equation for the input vector is given 

by,   

 

 Tpaaaa 21                                                          (13) 

 

where, a implies the input vector of the RBFNN. 

 

Step 2: The RBF Neurons 

Every RBF neuron saves a "prototype" vector. Every RBF 

neuron compares the input vector with its prototype; also 

output the value amid 0 and 1, which is a similarity 

measure. If the input is equal to the prototype the RBF 

neuron output indicates 1. The value of the neuron’s 

response is known as “activation” value. The prototype 

vector is known as neuron’s “center’.   

 

Step 3: The Output Nodes 

The network output contains set of nodes; every output node 

calculates a score sort to the corresponding group. 

Generally, a classification is carried out by allocating input 

to the highest scoring group. From each RBF neuron 

consider the weighted sum of the activation values, the 

score is computed. In each RBF neuron an output node 

connects the weighted value by weighted sum and 

multiplies the activation of the neuron by this weight before 

adding to the total response. Every output node contains 

their own set of weights to various categories since every 

output node calculates the score. The output node provides 

positive weight to the RBF neurons, whereas negative 

weight is shared by others.    

 

Step 4: RBF Neuron Activation Function  

Every RBF neuron calculates a similarity measure between 

the input and its prototype vector. Input vector is congruent 

for prototype that gives outcomes nearer to 1. There are 

various feasible selections of congruent functions depending 

upon Gaussian. The Gaussian equation of one-dimensional 

input is signified given below.  

 

 
2

2

2

2

1
)( 


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
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

a

eaf                                            (14)  

 

here, input denotes a , mean indicates  , standard deviation 

refers . The function of RBF neuron activation is 

marginally different, it is expressed as:   

 

2
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here, β implies distribution mean at the Gaussian 



18           Received on May 2020 

 

 

                  Journal of Soft Computing and Engineering Applications, Vol. 1, No. 2, 2020               

distribution.  

 
 

Figure 3: Flow chart of RBFNN 

 

After finishing the algorithm, RBFNN is efficient to 

forecast controller gain parameters as well as generates 

combination of optimal solution based on input time 

interval. 

 

5. RESULT AND DISCUSSION 

 

The TSA-RBFNN approach is performed in 

MATLAB/Simulink platform. Photovoltaic, wind turbine, 

battery sources are utilized to meet the load required of the 

system. The increasing requirement is satisfied using the 

optimum micro-grid configuration derived from TSA-

RBFNN approach. RBFNN approach is explored to assess 

the combination of optimum micro-grid configuration to 

satisfy the load requirement; whilst TSA reduces the costs 

for micro-grid combination like annualized capital cost, 

operation and replacement cost. The PV power with 24 hour 

plot is depicted in Figure 4 (a). During the 24-hour periods, 

the maximum power demand attains 25KW at 14 hrs a day 

and step by step decreases the power. The cost analysis in 

PV per day is represented in Figure 4 (b). Here, during the 

initial period cost analyzed o.19$ at the time period of 0-

8hrs; at the time instant of 8-18 hrs the maximum cost 

attains 0.2$.  

 

 
 

Figure 4: Load requirement of the proposed method for one day 

(a) Load requirement (b) Cost Profile 

 

Case 1: 1 PV 2WT, ESS and Grid 

In case 1, the PV analysis of power generated is represented 

in Figure 5. Sub plot 5(a) denotes PV power PV1 and PV2 

are analyzed in a day. When compared to the PV1 and PV2, 

PV1 is better performing to PV2. Sub plot 5 (b) denotes wind 

power WT1 and WT2 are analyzed in a day. When compared 

to the WT1 and WT2, WT1 is better performing to WT2. Sub 

plot 5(c) shows the battery charging and discharging period 

per day. Sub plot 5 (d) delineates the grid power; it attains 

maximum power of 2.5 KW at 21 hrs per day. Figure 6 

implicates the training with testing process of TSA-RBFNN 

technique per day. Sub plot 6(a) implies the PV1 power 

testing and training, the maximum testing occurs 6 KW 

during the period of 12 hrs; the maximum testing attains 6.2 

KW at 12 hrs per day. Sub plot 6(b) depicts the PV2 power 

testing and training, the maximum testing occurs 6.2 KW 

during the period of 13 hrs; the maximum testing attains 6.2 

KW at 13 hrs per day. Sub plot 6(c) represents the WT1 

power testing and training, the maximum testing occurs 7.8 

KW during the period of 18 hrs. The maximum testing 

attains 8 KW at 18 hrs per day. Sub plot 6(d) reveals the 

WT2 power testing and training, the maximum testing occur 

7.6 KW during the period of 12 hrs; the maximum testing 

attains 7.8KW at 12 hrs per day. 

 

 
Figure 5: PV Analysis of power generated (a) PV (b) WT (c) ESS 

(d) Grid Power 

 

Figure 7 displays the individual power in PV1, PV2, WT1, 

and WT2, battery and grid system. Sub plot 7 (a) refers the 

individual power in ECO-ANN technique. The maximum 

PV1 power attains 6 KW at 0-14 hrs in a day. PV2 attains the 

maximum power of 5.8 KW at 0-14 hrs in a day. The 

maximum WT1 power attains 7 KW at 0-14 hrs in a day. 

WT2 attains the maximum power of 6.8 KW at 0-14 hrs in a 

day. The battery charging time is 0-8 hr, charged power 

range is 5 KW at 6hrs. The battery discharge time is 8-15 

hrs; it reached maximum discharged power is -5 KW at the 

time period of 10 hrs. The maximum grid power attains 2.5 
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KW at 20 hrs. Sub plot 7(b) shows the individual power of 

CHO-RNN technique. The maximum PV1 power attains 6 

KW at 0-14 hrs in a day. PV2 attains the maximum power of 

5.8 KW at 0-14 hrs in a day. The maximum WT1 power 

attains 7 KW at 0-14 hrs in a day. WT2 attains the maximum 

power of 6.8 KW at 0-14 hrs in a day. The battery charging 

time is 0-8 hr, charged power range is 5 KW in 6hrs. The 

battery discharge time is 8-15 hr; its reached maximum 

discharge power is -5 KW at the time period of 10 hr. The 

maximum grid power attains 2.5 KW at 20 hrs. Sub plot 7 

(c) displays the individual power of TSA-RBFNN 

technique. The maximum PV1 power attains 6 KW at 0-14 

hrs in a day. PV2 attains the maximum power of 5.8 KW at 

0-14 hrs in a day. The maximum WT1 power attains 7 KW 

at 0-14 hrs in a day. WT2 attains the maximum power of 6.8 

KW at 0-14 hrs in a day. The battery charging time is 0-8 hr, 

charged power range is 5 KW at 6hrs. The battery discharge 

time is 8-15 hr; it reached maximum discharged power is -5 

KW at the time period of 10 hrs. The maximum grid power 

attains 2.5 KW at 20 hrs.  
 

 
 

Figure 6: Training & Testing of RBFNN (a) PV1 (b) PV2 (c) 

WT1 (d) WT2 Power 

 

 
Figure 7: Individual Power (a) EHO-ANN, (b) CHO-RNN, (c) 

TSA-RBFNN 

 

 
Figure 8: Cost Comparison (a) TSA-RBFNN with EHO-ANN (b) 

TSA-RBFNN with CHO-RNN 

 

 
 

Figure 9: Cost Comparison of proposed and existing technique 

 

Figure 8 illustrates the cost comparison of different 

techniques. Sub plot 8 (a) signifies the cost comparison 

analysis of TSA-RBFNN with EHO-ANN, compare to this 

in our proposed TSA-RBFNN gives the better result. Sub 

plot 8 (b) depicts the cost comparison analysis of TSA-

RBFNN with CHO-RNN; compare to this in our proposed 

TSA-RBFNN gives the better result. Figure 9 represents the 

cost comparison of TSA-RBFNN with existing approaches. 

Here, the cost comparison of TSA-RBFNN and the existing 

techniques like COA-RNN and EHO-ANN are presented. 

When likened with existing techniques the cost of TSA-

RBFNN technique is low. 

 

Case 2:  Absence of PV       

In case 2, PV analysis of power generated is represented in 

Figure 10. Sub plot 10 (a) represents PV power PV1 and 

PV2 are analyzed in a day. When compared to the PV1 and 

PV2, PV1 is better performing to PV2. Sub plot 10 (b) 

indicates wind power WT1 and WT2 are analyzed in a day. 

When compared to the WT1 and WT2, WT1 is better 

performing to WT2. Sub plot 10 (c) shows the battery 

charging and discharging period of per day. Sub plot 10 (d) 

illustrates the grid power; it attains maximum power of 2.5 

KW at 21 hrs per day. Figure 11 implies the training with 

testing process of TSA-RBFNN technique in a day. Sub plot 

11 (a) refers the PV1 power testing and training, the 

maximum testing occur 6 KW during the period of 12 hrs, 

the maximum testing attains 6.2 KW at 12 hrs per day. Sub 

plot 11 (b) indicates the PV2 power testing and training, the 
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maximum testing occur 6.2 KW during the period of 13 hrs, 

the maximum testing attains 6.2 KW at 13 hrs per day. Sub 

plot 11 (c) implicates the WT1 power testing and training, 

the maximum testing occurs 7.8 KW during the period of 18 

hrs. The maximum testing attains 8 KW at 18 hrs per day.  

 

 
 

Figure 10: power of (a) PV (b) WT (c) ESS (d) Grid  

 

 
 

Figure 11: Individual Power (a) EHO-ANN (b) CHO-RNN (c) 

TSA-RBFNN 

 

 
 

Figure 12: Cost Comparison (a) TSA-RBFNN with EHO-ANN 

(b) TSA-RBFNN with CHO-RNN 

 

 
 

Figure 13: Cost Comparison of proposed with existing technique 

 

Figure 12 illustrates the cost comparison of different 

techniques, sub plot 12 (a) shows the cost comparison 

analysis of TSA-RBFNN with EHO-ANN, and compare to 

this in our proposed TSA-RBFNN gives the better result. 

Sub plot 12 (b) signifies the cost comparison analysis of 

TSA-RBFNN with CHO-RNN, compare to this in our 

proposed TSA-RBFNN gives the better result. Figure 13 

displays the cost comparison of TSA-RBFNN with existing 

approaches. Here, the cost comparison of TSA-RBFNN and 

the existing techniques like COA-RNN and EHO-ANN are 

presented. When likened with existing techniques the cost of 

proposed TSA-RBFNN technique is low. 

 

Case 3: Absence of wind 

In case 2, PV analysis of power generated is represented in 

Figure 14. Sub plot 14 (a) depicts PV power of PV1 and PV2 

are analyzed in a day. When compared to the PV1 and PV2, 

PV1 is better performing to PV2. Sub plot 14(b) implies 

wind power of WT1 and WT2 are analyzed in a day. When 

compared to the WT1 and WT2, WT1 is better performing to 

WT2. Sub plot 14(c) shows the battery charging and 

discharging period in a day. Sub plot 14 (d) illustrates the 

grid power; it attains the maximum power of 2.5 KW at 21 

hrs in a day. Figure 15 delineates the training with testing 

process of TSA-RBFNN technique in a day. Sub plot 15 (a) 

depicts the PV1 power testing and training, the maximum 

testing occur 6 KW during the period of 12 hrs. The 

maximum testing attains 6.2 KW at 12 hr per day. Sub plot 

15 (b) depicts the PV2 power testing and training, the 

maximum testing occur 6.2 KW during the period of 13 hrs. 

The maximum testing attains 6.2 KW at 13 hrs per day. Sub 

plot 15 (c) defines the WT1 power testing and training, the 

maximum testing occurs 7.8 KW during the period of 18 

hrs. The maximum testing attains 8 KW at 18 hrs per day. 

Sub plot 15 (d) implicates the WT2 power testing and 

training, the maximum testing occur 7.6 KW during the 

period of 12 hrs. The maximum testing attains 7.8KW at 12 

hrs per day.  
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Figure 14: Power analysis of (a) PV Power (b) WT Power (c) ESS 

Power (d) Grid Power 

 

 
 

Figure 15: Individual Power of (a) EHO-ANN (b) CHO-RNN (c) 

TSA-RBFNN 

 

 
Figure 16: Cost Comparison of (a) TSA-RBFNN with EHO-ANN 

(b) TSA-RBFNN with CHO-RNN 

 

Figure 16 depicts the individual power of PV1, PV2, WT1, 

and WT2, battery and grid system. Sub plot 16 (a) shows the 

individual power of ECO-ANN technique. The maximum 

PV1 power attains in 6 KW at 0-14 hrs in a day. PV2 attains 

the maximum power of 5.8 KW at 0-14 hrs per day. The 

maximum WT1 power attains in 7 KW at 0-14 hrs in a day. 

WT2 attains the maximum power of 6.8 KW at 0-14 hrs in a 

day. The battery charging time is 0-8 hrs, charged power 

range is 5 KW at 6hrs. The battery discharge time is 8-15 

hrs; it reached maximum discharged power is -5 KW at the 

time period of 10 hrs. The maximum grid power attains in 

2.5 KW at 20 hrs. Sub plot 16 (b) represents the individual 

power of CHO-RNN technique. The maximum PV1 power 

attains in 6 KW at 0-14 hrs in a day. PV2 attains the 

maximum power of 5.8 KW at 0-14 hrs in a day. The 

maximum WT1 power attains in 7 KW at 0-14 hrs in a day. 

WT2 attains the maximum power of 6.8 KW at 0-14 hrs in a 

day. The battery charging time is 0-8 hr, charged power 

range is 5 KW at 6hrs. The battery discharge time is 8-15 hr; 

it reached maximum discharged power is -5 KW at the time 

period of 10 hrs. The maximum grid power attains 2.5 KW 

at 20 hrs. Sub plot 16 (c) portrays the individual power of 

TSA-RBFNN technique. The maximum PV1 power attains 6 

KW at 0-14 hrs in a day. PV2 attains the maximum power of 

5.8 KW at 0-14 hrs in a day. The maximum WT1 power 

attains in 7 KW at 0-14 hrs in a day. WT2 attains the 

maximum power of 6.8 KW at 0-14 hrs in a day. The 

battery charging time is 0-8 hrs, charged power range is 5 

KW at 6hrs. The battery discharge time is 8-15 hr; it 

reached maximum discharged power is -5 KW at the time 

period of 10 hrs. The maximum grid power attains 2.5 KW 

at 20 hrs. 

 
 

Figure 17: Cost Comparison of proposed and existing technique 

 

 
 

Figure 18: Fitness comparison of proposed and existing technique 

 

Figure 17 illustrates that the cost comparison of different 

techniques. Sub plot 17 (a) indicates the cost comparison 

analysis of TSA-RBFNN with EHO-ANN; when comparing 

to this in our proposed TSA-RBFNN gives the better result. 
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Sub plot 17 (b) signifies the cost comparison analysis of 

TSA-RBFNN with CHO-RNN; when comparing to this in 

our proposed TSA-RBFNN gives the better result. In Figure 

18, the fitness comparison of TSA-RBFNN with existing 

approaches is presented. Where, TSA-RBFNN approach in 

the range of iteration is 38 whereas the fitness value is 0.53. 

The existing COA-RNN technique in the range of iteration 

is 39 whereas the fitness value is 0.54, then the existing 

EHO-ANN technique in the range of iteration is 41 whereas 

the fitness value is 0.55. When likened with the existing 

approaches, the fitness of TSA-RBFNN approach is less. 

 
Table 1: Statistical analysis of proposed and existing technique 

Solution 

Techniques 
Mean Median 

Standard 

Deviation 

(SD) 

TSA-RBFNN 0.4933 0.4867 0.0111 

COA-RNN 0.5032 0.4940 0.0142 

BFA-ANN 0.5095 0.4981 0.0159 

 
Table 2: Elapsed Time 

Solution approaches Elapsed Time(sec) 

TSA-RBFNN 1.471046 

COA-RNN 1.592524 

BFA-ANN 1.871135 

 

Table 1 tabulates the statistical analysis of TSA-

RBFNN with existing method. The mean value of TSA-

RBFNN technique is 0.4933, mean value of existing COA-

RNN technique is 0.5032 and BFA-ANN is 0.5095. The 

median value of proposed TSA-RBFNN technique is 

0.4867, mean value of existing COA-RNN technique is 

0.4940 and BFA-ANN is 0.4981. The SD value of proposed 

TSA-RBFNN technique is 0.0111, mean value of existing 

COA-RNN technique is 0.0142 and BFA-ANN is 0.0159. 

Table 2 shows the elapsed time for TSA-RBFNN with 

existing technique. Here the elapsed time for TSA-RBFNN 

technique is 1.471046, the elapsed time for existing COA-

RNN is 1.592524 and BFA-ANN is 1.871135. 

 

6. CONCLUSION 

 

This manuscript proposed a hybrid method for optimum 

energy management of a grid-connected PV, wind turbine, 

micro turbine including energy storage system using TSA-

RBFNN technique. Here, the system model and the 

distribution of micro-grid with minimum effort using the 

TSA-RBFNN technique. The TSA-RBFNN technique 

chooses the allocation of micro-grid as represented by the 

load requirement along less fuel cost, replacement and 

operating cost. The advantages of the TSA-RBFNN 

approach were improved local search capability, minimized 

computation complex, randomness in generation, which 

provides maximized accuracy of dimension. TSA-RBFNN 

approach was examined for various load requirement 

values, micro-grid configuration and the corresponding 

annualized total costs were evaluated. The efficacy of the 

TSA-RBFNN technique was analyzed using the comparison 

of other existing approaches, such as COA-RNN and BFA-

ANN. Finally, the comparison outcomes prove that the 

TSA-RBFNN technique was more proficient than the other 

existing techniques. 
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