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Abstract: In this manuscript, a proficient hybrid approach to the system model and the optimum energy
management of the micro-grid with less cost is proposed. The innovative of the proposed method is the
consolidation of Tunicate swarm optimization (TSA) and Radial Basis functional Neural Network
(RBFNN) known as TSA-RBFNN, which enables the decision making along the multi-objective issues.
Furthermore, the most advantages of the TSA-RBFNN technique is the cost-effective power production of
the micro-grids (MGs) including effectual use of renewable energy sources (RESs) without lose the
obtainable energy. The technique is concerned with more mathematical optimization issues, which involves
an objective function that should be optimal concurrently. The TSA algorithm improves the micro-grid
structure at minimal fuel cost to carry out the necessary load requirement by utilizing the micro-grids inputs
such as wind turbine (WT), photovoltaic (PV) array, micro turbine (MT), energy storage system (ESS) and
related cost operation. In TSA-RBFNN technique, RBFNN learning phase is used to forecast the load
requirement. In terms of the predicting load requirement, minimal annualized fuel cost properties, cost
operation, replacement cost is minimized with every successive point of the TSA-RBFNN technique. The
efficiency of the TSA-RBFNN technique is analyzed by likened to the other existing techniques like COA-
RNN and BFA-ANN. The comparison outcomes prove the magnificence of the TSA-RBFNN technique;
also corroborate its efficient to determine the complex.

Keywords: Wind turbine, Micro turbine, Operation cost, Photovoltaic, Tunicate swarm optimization,
Radial Basis functional Neural Network

1. INTRODUCTION

The applications of RESs have pointed out in the past years;
RES are minimizing the green house gas emissions and fuel
usage that are used to contribute in the Distributed
Generation (DG) enhancement to highlight the aggressive

solution for the future. It means power system connected
grid [1, 2]. Thus they can generate electricity with minimal
environmental impacts, and easy to install, highly reliable
and efficiency increases. In addition, owing to inherent
nature of both renewable sources with energy utilized by
load, a grid connection is required. Under the circumstances,
the energy storage systems (ESS) like flywheels, super
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capacitor, batteries etc [3]. And energy management system
(EMS) is proposed to enhance system stability and its
efficiency. Generally, microgrid (MG) is powerful enough
to work in grid-connected as well as stand-alone systems.
Those are illustrated as less voltage systems consisting of
loads, storage device and distributed generation units, which
directly coupled with mains in a single point of common
coupling (PCC) [4].

Grid connection in RES can be used to achieve a set of
predefined objectives, like reducing grid operating costs or
increasing revenues in line with DG auction and electricity
market prizes. EMS is responsible for controlling power
flows between components [5-7]. In addition, the EMS is
based on the grid, the power framework in specific the grid
elements energy management potential must be taken into
account (control over which sources, loads and storage
components). When the power design together with
predefined objectives is known, EMS model could carried
out using various approaches [8, 9]. For example, in an
EMS it is modelled using local forecasting and stochastic
dynamic programming (SDP), which is a grid connected
MG. Furthermore, the EMS model focuses on controlling
the EMS with a predictive control mechanism for
compensating the hourly distortions of the energy plan
predicted at grid connected micro-grid [10-12].

Battery energy storage (BES) is typically used for solar,
wind, turbine power systems; it overcomes the sluggish
power requirement. Nevertheless, it is not able to dissipate
large power fluctuations when affected by higher frequency
[13, 14]. Integrating the application grid with distributed,
proficient and dependable DG systems without much
investment is still a major challenge. RES have intermissive
and approximately fluctuating power, which in turn a
primary issue when such source of energy turn a major
component of overall grid power generation. This problem
can be overcome in principle by massive savings [15]. To
overcome the above mentioned issue, the energy saving
combination with various phenoms is utilized. The energy
storage system is a greater combination of super capacitor
(SC) and battery system. Battery energy storage is used to
overcome sluggish changing power requirement, whereas
SCs handles transient power fluctuations [16, 17]. To
prolong the life of the battery and SC, they are not highly
charged or discharged. To manage energy reserves at safe
operating conditions the EMS is mandatory, in which can
efficiently use energy storage and defend against excessive
charge or excessive discharge. Here, storage is highly
expensive for using large scale; so many researches are
work to develop low cost and highly efficient storage
devices [18-20]. We develop to research optimal control
strategies for energy storage system in grid connection.

In this manuscript, a proficient hybrid approach to the
system model and the optimum energy management of the
micro-grid along less cost is proposed. The innovative of the
TSA-RBFNN method is the consolidation of Tunicate
swarm optimization (TSA) and Radial Basis functional
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Neural Network (RBFNN) known as TSA-RBFNN, which
enables the decision making along the multi-objective
issues. The remainder of this manuscript is designed as.
Segment 2 defines recent research works. Segment 3
portrays problem formulation. Segment 4 delineates the
analysis with system configuration of micro-grid connected
system for optimum energy management. Segment 5
explains the experimental results. Finally, segment 6
concludes the manuscript.

2. RECENT RESEARCH WORK: A BRIEF REVIEW

Several investigation works have already existed at the
literature, which is depending on the energy management in
grid connected system with different techniques and aspects.
Here, certain works are reviewed.

N. Liu et al. [21] introduced a multiple-level energy
management system with power requirement was advanced
for the Combined heat and power and micro-grid (MG). An
optimization modeling of micro-grid operator (MGO) was
designed, which includes gas cost, the revenue from the
energy sale to the consumer, high electricity to utility grid.
The combined heat and power system can be enabled as a
hybrid manner, which were followed the electric load
(FEL), followed the thermal load (FTL). An optimization
model was designed with the use of power consuming, the
cost of buying electricity, heat as well as convenient amount
of indoor temperature. D. Lifshitz and G. Weiss [22] have
suggested three optimal solutions for charging and
discharging methods for the increasing the energy at grid
connected storage system. The three optimal methods were
generated for three versions of the optimization issues. (a)
The system contains storage of super capacitor, which has
been control in continual time. (b) The system contains
battery type storage or super capacitor and has been
controlled at a separate time. (c) The system has the storage
type of battery and has been controlled in continuous time.
D. A. Auviles et al. [23] have implemented the concept of
less complexity Fuzzy Logic Controller in EMS for grid-
connected through MG owing to the RES and storage
capability. The main aim of this advanced technique was to
reduce the grid power fluctuations due to the battery storage
system. The advanced method was employ MG and State of
Charge (SOC) both were high/low or maintained power
absorbed or delivered. The design parameters were
controlled or adjusted to improve the pre-defined
characteristics of the MG.

U. Manandhar et al. [24] have developed a novel EMS
to the grid connected hybrid energy storage along the super
capacitor, battery subject to various operating conditions.
The benefits of the new EMS were effectual sharing of
power among various ESS, load disturbances, accelerated
direct current link voltage controlling for generation and
dynamic power sharing amid the grid in terms of battery
state of charge (SOC) and battery, minimize the rate of
over- charging/discharging of battery current according to
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the steady state with fluctuations of transient power, to
enhance the power characteristics phenomenon in AC grid
as well as seamless mode transitions.

H. Wu et al. [25] have implemented the concept of the
photovoltaic control strategies, grid-connected inverter with
the battery. The new control scheme of EMS to DC bus was
implemented to avoid frequent charging or discharging the
battery. A linear control function was utilized in external
voltage control of the battery to prevent the battery from
switching back and forth amid the operating position and the
halting position. The example proves the accuracy of the
system modeling, control techniques, reaches the
transmitting power attached to the stationary grid. This
scheme generates a reference to the photovoltaic system
participating in power dispatch.

P. Malysz et al. [26] have demonstrated the online
optimum power control scheme to the function of energy
storage in grid-connected through microgrid (MG). The
method depending on the mixed-integer-linear program
optimization designed for the rolling horizon, while
evaluating the future electricity consumers including
renewable energy generation. The objective of the
performance involves utility-specific objectives related to
electricity utilization cost, battery operation costs and peak
requirement and load softening. A strong counter-design of
the optimization issues has been advanced to manage
uncertainty in energy requirement/generation forecasting at
compute a proficient way.

J. Pascual et al. [27] have implemented the designing
concept of an EMS depend upon less complexity Fuzzy
Logic Control (FLC) to grid power profile smooth of grid-
connected MG, battery ESS, RESs. The MG power predicts
error and the battery state of charge of the new scheme
enables the appropriate grid power controlling. The benefits
of the new scheme were to reduce the fluctuations, power
peaks at the power profile exchange along the grid while
retention the energy saved at the battery within safe
limitations. The new energy management scheme using
generation as well as required predicting to expect the future
performance of MG.

2.1. Background of the Research Work

The review of recent investigation work shows that the
energy management in the grid connected RESS is an
important contribution factor. The EMS design depending
upon grid connected, RES including ESS. The energy
storage devices like battery, super capacitor, state of charge
etc. to enhance the power demand prediction. Integrating the
application grid with distributed, proficient and dependable
DG systems without much investment is still a major
challenge. To overcome the above mentioned issue, the
energy saving combination with various phenoms is utilized
such as Fuzzy Logic Control (FLC), combined heat and
power, SOC etc. FLC is to clarify the grid power profile of
grid-connected MG together with battery ESS, RESs.
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However, it is not able to dissipate with the large power
fluctuations when affected by high frequency. To manage
energy reserves at secure operating condition, the EMS is
mandatory, which can successfully use energy storage and
defend against excessive charge or excessive discharge. The
advanced EMS uses generation with required predicting to
expect the future electricity requirement. At literature, to
overcome this problem does not more works are introduced
and the revealed works are inefficient. Such problems and
constraints have been inspirational to do these research
works.

3. PROBLEM FORMULATION

The major purpose of the proposed work as represent at the
designing and modeling of grid-connected hybrid energy
system. The integration of photovoltaic system, wind
turbine, micro turbine, energy storage system denotes the
hybrid renewable energy system. To check the cost-
effective of the TSA-RBFNN method, the TSA-RBFNN
approach finds the optimum number of HRESs. The
electricity requirement of the region has been fully meet
while minimum energy costs of the system are also reduced
under the constraints. The brief explanation of the objective
function, operational scheme, execution of the proposed
algorithm is given below.

3.1. Formulation of the objective function

The main objective functions in the proposed hybrid
renewable energy resources, reduction of annual cost of the
overall system. The overall capital cost, replacement cost,
cost of operation with maintenance, grid sale, purchase
power costs are the factors, which include in the total
system cost. These costs involve the installing whereas
other costs involve the capital cost [28]. While satisfying
other constraints the system with less annual cost is deemed
better one. The minimized objective function is as denotes
as blow follows,

min(ac) =[Npy Cpy +NyrCr + PumrCur + PessCess 1)

where, the total annual cost of photovoltaic, wind turbine,
micro turbine, energy storage system are denoted as CPV;
CWT; CMT and CESS and AC is denoted as the system
annual cost. Annually, overall price of electricity sold for
grid ($/yr). The several components which are annual
capital cost, annual operational, annual replacement cost
comprises each component in the annualized cost. To posses
all kind of costs the micro turbine cost analysis is also
delineated. The below expression denotes the AC of MT
CMT includes few components as follows,

MT MT MT
Cmt = Cac(cap) 1 Cac(rep) + C+¢ (2)

where CMT (f) implies operational (fuel) cost, the annual
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replacement cost is denoted as CMT, CMT (f) refers
operational (fuel) cost and the annual capital cost is
represented as CMT.

3.2. Annualized capital cost

The capital cost of the components involves the components
of install and purchase cost. This chapter is mentioned about
every component like photovoltaic, wind turbine, micro
turbine, energy storage system the annualized capital cost of
these components are computed using CRF [29]. To
compute the current value of money is the CRF ratio. The
overall micro turbine system is revealed as below,

Cg/(l:.(rcap) = Cé\gg)CRF(a: A (3)

where, the lifetime indicates f years, rate of interest
indicates o then the wind turbine initial capital cost is
exhibited as CMT Cap. Therefore the CRF is evaluated as
follows below,

a@+a)?

CRF (e /)= =

(4)

3.3. Annual replacement cost

The annual replacement cost of wind turbine implicates
replacement cost of wind turbines lifespan. The expression
of CMT the annual value of overall replacement cost is
described as below,

al+a)”

Q1+ a) A1 ©)

Cgltl:-(rrep) =CRF (O!,IB) =

where, | specify lifespan of micro turbine system at years
and the component replacement cost represents CMT rep.
The expression of the remaining power is given below,

3.4. Operational strategy

Due to the environmental issues, the power generated from
the photovoltaic panels as well as wind turbine is placed in
first priority than micro turbine in the operational strategy.
The power management is carried out through the given
operational strategy at the proposed grid-connected hybrid
system [30]. At the initial stage of this strategy, when the
power generated by photovoltaic, wind turbine are sufficient
and higher than load requirement, the remainder power
could be transferred to the grid, which could be supplied
directly by the solar and wind power, it is demonstrated in
the equation below,

Pgs(T) = (Ppv (T) + Pwr (T) — PL(T)) (6)
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here, P defines power supplied to the grid. The operational
strategy at the second stage, when the Pgs greater than Pmax
gp (maximum grid sales ability) the excessive power is
discharged and it is expressed below,

Pa (M) = (Ppy (T) + Pur (T) — P (T) — pg/:)ax (7

where, Pgp signifies amount of power supplied to the grid.
At the third level of the operational strategy, the power from
photovoltaic panels is not sufficient when the load could be
supplied directly through the grid power that is exhibited in
the equation below,

pL(T) < pgi 8)

The operational strategy at the fourth stage wind turbine
power while the power from the photovoltaic panels and the
wind turbine are insufficient when the micro turbine is start
and load supplied by micro turbine, grid and photovoltaic.
The operational strategy at the fifth stage within a maximal
limitation of grid sale ability, the remaining power sold to
the grid.

4. ANALYSIS AND SYSTEM CONFIGURATION OF
MICRO-GRID CONNECTED SYSTEM FOR
OPTIMUM ENERGY MANAGEMENT

In this manuscript, with MG connected systems a proficient
control method is proposed for optimal energy management.
The proposed technique is TSA-RBFNN technique where
the proficient control strategy is the consolidation of TSA
and RBFNN [31]. The systems of photovoltaic, wind
turbine, micro turbine, energy storage system are the
compilation of micro-grid connected system. The power
flow control amid the source of energy and the grid is the
primary objective of TSA-RBFNN method. This can be
satisfying the required power grid from the renewable
energy power with grid operator. The power required for the
grid operator is provided as a reference to the MG input
[32]. The full power reference amid the system parts is
accurately distributed through the TSA-RBFNN method. To
continuous perform in steady as well as stable output power,
the renewable power system units are firmed and allowed by
the battery, which performs as the source of energy. Figure
1 portrays the system configuration of the micro-grid
connected system.

Figure 1 portrays the dispatchable resources termed as
micro turbine, the non-dispatchable resources like
photovoltaic, wind turbine, RESs. As seen from this Figure,
the battery defines energy storage device. To micro-grid
system, the TSA-RBFNN method is utilized to define the
EMS and also access the total production of cost operations
[33]. The micro-grid energy management is analyzed at the
grid-connected method to the distinct function. At the
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initial, the control tasks are executed after that micro-grid
has been able to plan with the proper ratings. During the
micro-grid process the load requirement satisfied all time
subject to grid mode. Optimization algorithms are used to
express the objective of micro-grids to achieve the optimal
function. The power produced from the non-dispatchable
resources like photovoltaic, wind turbine is used the energy
storage with natural benefit. The dynamic power, operation
condition of energy storage system, dispatchable units is
deemed as the control aspects utilized to define the energy
management scheme [34]. In the TSA-RBFNN technique,
the objective function is analyzed in terms of annual capital
cost, annual replacement cost, operational cost of the micro-
grid system. Here, the procedure with optimum intensity of
control units are estimated in provided time. The optimum
cost of power controlling is the primary objective of the
TSA-RBFNN technique. So, the aim of the micro-grids is to
minimize and maximize revenues when the optimal function
is attained. The TSA and RBFNN methods are described
below.

Power Grid

Figure 1: System configuration of MG with proposed TSA-
RBFNN Technique

4.1. Aim of Adopting the Proposed TSA Technique
TSA is a meta-heuristic optimization algorithm it follows jet

propulsion with swarm behavior of tunicates when the
process of navigation and foraging. Tunicate contains
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capacity to identify the location of food source at the sea
[35]. Nevertheless, nothing is known about the food source
in a given search location. In this manuscript, to detect the
food source two tunicate behaviors are applied, that is
optimal. Such behaviors are known as jet propulsion
together with swarm intelligence. To mathematical model of
jet propulsion behavior, a tunicate must satisfy three
different terms. They are, neglect the conflicts among the
search agents, movement towards the position of best search
agent, remain near to the best search agent. The swarm
behavior would update the other search agent positions
about the optimum solution. In this manuscript, TSA
algorithm is applied to obtain the optimal mean error value
so that using this, the speed and torque of the motor can be
controlled. Initially, error signals are initialized and
randomly generated the gain parameters of the proportional
integral controller.

4.1.1. Step by Step TSA process

Step 1: Initialization of population
Initialize the tunicate population P, which is generated
randomly in the search space.

Step 2: Select the initial parameters with maximal count of
iterations.

Step 3: Fitness Evaluation

Compute every search agent fitness value. To get minimal
error function, the given equation is utilized to achieve the
optimal pulses,

Fitness = min(E) (10)
Based on the fitness value, the minimum error value is
denoted as (E).

Step 4: After calculating the value of fitness, better search
agent is examined at the following search space

Step 5: Updating the position of each search agent utilizing
the equation (1)

Py (X)+ P, (x+1)
2+C

Pp(x+1) = (11)

Step 6: New Position Updation

Consider the given equation to generate the new solution
utilizing crossover as well as mutation operator,
NP=R+V (12)
here, reflection as R, visibility as V. Crossover and mutation
operator improves the new solution update to obtain an
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optimum global solution.

Initialization
Start
.- Step 1
End /\
A Vo Random
i IS4 — S Generation

Step 5 / ' /

Crossover & \ Step 3
Mutation Step 4 .
Updation
Update the
position of
New position TSA4

update

Figure 2: Flow chart of TSA

Step 7: Modify the updating search agent beyond the
boundaries of provided search location.

Step 8: Calculate updating the fitness value of search agent
if it is best solution than the existing optimum solution.

Step 9: If the stopping criteria is fulfilled, then stop the
algorithm. Else, repeat steps 5-8.

Step 10: Return better optimum solution that is acquired so
far.

4.2. Prediction of Load Demand Using RBFNN

RBFNN is an artificial neural network that uses radial basis
functions as activation functions in the field of mathematical
modeling. Input layer is the first layer, and it is consisted of
source node to the input data [36]. Single hidden layer in
network is the second layer that is carried out the radial
basis operations. The nonlinear transformation is used by
such functions from the input layer to the hidden layer. The
output layer is the third layer. The network’s output layer is
a linear combination of inputs and neuron parameters radial
basis functions. Here, RBFNN is trained with the suitable
input time intervals of the day due to target power
requirement. To implement the proposed technique, input
variables selection for every node refers to first layer then
the output is calculated using Gaussian membership
function.

Step 1: The Input Vector
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At the input layer of the network, the input vector a is used.
In the TSA-RBFNN technique, the time interval T
represents network input, load requirement represents
network output. The equation for the input vector is given

by,

az[al az---ap]T (13)

where, a implies the input vector of the RBFNN.

Step 2: The RBF Neurons

Every RBF neuron saves a "prototype" vector. Every RBF
neuron compares the input vector with its prototype; also
output the value amid 0 and 1, which is a similarity
measure. If the input is equal to the prototype the RBF
neuron output indicates 1. The value of the neuron’s
response is known as ‘“activation” value. The prototype
vector is known as neuron’s “center’.

Step 3: The Output Nodes

The network output contains set of nodes; every output node
calculates a score sort to the corresponding group.
Generally, a classification is carried out by allocating input
to the highest scoring group. From each RBF neuron
consider the weighted sum of the activation values, the
score is computed. In each RBF neuron an output node
connects the weighted value by weighted sum and
multiplies the activation of the neuron by this weight before
adding to the total response. Every output node contains
their own set of weights to various categories since every
output node calculates the score. The output node provides
positive weight to the RBF neurons, whereas negative
weight is shared by others.

Step 4: RBF Neuron Activation Function

Every RBF neuron calculates a similarity measure between
the input and its prototype vector. Input vector is congruent
for prototype that gives outcomes nearer to 1. There are
various feasible selections of congruent functions depending
upon Gaussian. The Gaussian equation of one-dimensional
input is signified given below.

f(a):——i——e_ZOf2

a~2r

here, input denotes &, mean indicates £ , standard deviation

refersa . The function of RBF neuron activation is
marginally different, it is expressed as:

(14)

a-p1?

w(a)=e" (15)

here, p implies distribution mean at the Gaussian
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Figure 3: Flow chart of RBFNN

After finishing the algorithm, RBFNN is efficient to
forecast controller gain parameters as well as generates
combination of optimal solution based on input time
interval.

5. RESULT AND DISCUSSION

The TSA-RBFNN approach is performed in
MATLAB/Simulink platform. Photovoltaic, wind turbine,
battery sources are utilized to meet the load required of the
system. The increasing requirement is satisfied using the
optimum micro-grid configuration derived from TSA-
RBFNN approach. RBFNN approach is explored to assess
the combination of optimum micro-grid configuration to
satisfy the load requirement; whilst TSA reduces the costs
for micro-grid combination like annualized capital cost,
operation and replacement cost. The PV power with 24 hour
plot is depicted in Figure 4 (a). During the 24-hour periods,
the maximum power demand attains 25KW at 14 hrs a day
and step by step decreases the power. The cost analysis in
PV per day is represented in Figure 4 (b). Here, during the
initial period cost analyzed 0.19% at the time period of 0-
8hrs; at the time instant of 8-18 hrs the maximum cost
attains 0.2$.

s B B
.

Power(kW)

Cost($kWh)
3

~

il

5 10 15 2
Time(hour)

@ )

8. N 8
: \
I A}
) N
\h-’
5 : 5

10 20 i

Time(hour)

Figure 4: Load requirement of the proposed method for one day
(a) Load requirement (b) Cost Profile
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Case 1: 1 PV 2WT, ESS and Grid

In case 1, the PV analysis of power generated is represented
in Figure 5. Sub plot 5(a) denotes PV power PV, and PV,
are analyzed in a day. When compared to the PV; and PV,,
PV is better performing to PV,. Sub plot 5 (b) denotes wind
power WT, and WT, are analyzed in a day. When compared
to the WT, and WT,, WT, is better performing to WT,. Sub
plot 5(c) shows the battery charging and discharging period
per day. Sub plot 5 (d) delineates the grid power; it attains
maximum power of 2.5 KW at 21 hrs per day. Figure 6
implicates the training with testing process of TSA-RBFNN
technique per day. Sub plot 6(a) implies the PV, power
testing and training, the maximum testing occurs 6 KW
during the period of 12 hrs; the maximum testing attains 6.2
KW at 12 hrs per day. Sub plot 6(b) depicts the PV, power
testing and training, the maximum testing occurs 6.2 KW
during the period of 13 hrs; the maximum testing attains 6.2
KW at 13 hrs per day. Sub plot 6(c) represents the WT,
power testing and training, the maximum testing occurs 7.8
KW during the period of 18 hrs. The maximum testing
attains 8 KW at 18 hrs per day. Sub plot 6(d) reveals the
WT, power testing and training, the maximum testing occur
7.6 KW during the period of 12 hrs; the maximum testing
attains 7.8KW at 12 hrs per day.

Power(kW)
Power(kW)

5
Time(hour)

®

Power(kW)

Power(k\W)

15 @

0 5 1 15 2 ] 0 0
Time(hour)

Time{hour)

© ©

Figure 5: PV Analysis of power generated (a) PV (b) WT (c) ESS
(d) Grid Power

Figure 7 displays the individual power in PV,, PV,, WT;,
and WT2 battery and grid system. Sub plot 7 (a) refers the
individual power in ECO-ANN technique. The maximum
PV power attains 6 KW at 0-14 hrs in a day. PV, attains the
maximum power of 5.8 KW at 0-14 hrs in a day. The
maximum WT; power attains 7 KW at 0-14 hrs in a day.
WT, attains the maximum power of 6.8 KW at 0-14 hrs in a
day. The battery charging time is 0-8 hr, charged power
range is 5 KW at 6hrs. The battery discharge time is 8-15
hrs; it reached maximum discharged power is -5 KW at the
time period of 10 hrs. The maximum grid power attains 2.5
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KW at 20 hrs. Sub plot 7(b) shows the individual power of
CHO-RNN technique. The maximum PV; power attains 6
KW at 0-14 hrs in a day. PV, attains the maximum power of
5.8 KW at 0-14 hrs in a day. The maximum WT; power
attains 7 KW at 0-14 hrs in a day. WT, attains the maximum
power of 6.8 KW at 0-14 hrs in a day. The battery charging
time is 0-8 hr, charged power range is 5 KW in 6hrs. The
battery discharge time is 8-15 hr; its reached maximum
discharge power is -5 KW at the time period of 10 hr. The
maximum grid power attains 2.5 KW at 20 hrs. Sub plot 7
(c) displays the individual power of TSA-RBFNN
technique. The maximum PV, power attains 6 KW at 0-14
hrs in a day. PV, attains the maximum power of 5.8 KW at
0-14 hrs in a day. The maximum WT, power attains 7 KW
at 0-14 hrs in a day. WT,, attains the maximum power of 6.8
KW at 0-14 hrs in a day. The battery charging time is 0-8 hr,
charged power range is 5 KW at 6hrs. The battery discharge
time is 8-15 hr; it reached maximum discharged power is -5
KW at the time period of 10 hrs. The maximum grid power
attains 2.5 KW at 20 hrs.

Power(kW)

Power(kWW)

i 15 0 10 15 2 5
Time{hour) Time(hour)

(@ @

Figure 6: Training & Testing of RBFNN (a) PV1 (b) PV2 (c)
WT1 (d) WT2 Power

i T 5

0
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Power(kW)

0
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©

Figure 7: Individual Power (a) EHO-ANN, (b) CHO-RNN, (c)
TSA-RBFNN
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Figure 9: Cost Comparison of proposed and existing technique

Figure 8 illustrates the cost comparison of different
techniques. Sub plot 8 (a) signifies the cost comparison
analysis of TSA-RBFNN with EHO-ANN, compare to this
in our proposed TSA-RBFNN gives the better result. Sub
plot 8 (b) depicts the cost comparison analysis of TSA-
RBFNN with CHO-RNN; compare to this in our proposed
TSA-RBFNN gives the better result. Figure 9 represents the
cost comparison of TSA-RBFNN with existing approaches.
Here, the cost comparison of TSA-RBFNN and the existing
techniques like COA-RNN and EHO-ANN are presented.
When likened with existing techniques the cost of TSA-
RBFNN technique is low.

Case 2: Absence of PV

In case 2, PV analysis of power generated is represented in
Figure 10. Sub plot 10 (a) represents PV power PV, and
PV, are analyzed in a day. When compared to the PV, and
PV,, PV, is better performing to PV,. Sub plot 10 (b)
indicates wind power WT, and WT, are analyzed in a day.
When compared to the WT; and WT,, WT; is better
performing to WT,. Sub plot 10 (c) shows the battery
charging and discharging period of per day. Sub plot 10 (d)
illustrates the grid power; it attains maximum power of 2.5
KW at 21 hrs per day. Figure 11 implies the training with
testing process of TSA-RBFNN technique in a day. Sub plot
11 (a) refers the PV, power testing and training, the
maximum testing occur 6 KW during the period of 12 hrs,
the maximum testing attains 6.2 KW at 12 hrs per day. Sub
plot 11 (b) indicates the PV, power testing and training, the
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maximum testing occur 6.2 KW during the period of 13 hrs,
the maximum testing attains 6.2 KW at 13 hrs per day. Sub
plot 11 (c) implicates the WT, power testing and training,
the maximum testing occurs 7.8 KW during the period of 18
hrs. The maximum testing attains 8 KW at 18 hrs per day.
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Figure 13: Cost Comparison of proposed with existing technique

Figure 12 illustrates the cost comparison of different
techniques, sub plot 12 (a) shows the cost comparison
analysis of TSA-RBFNN with EHO-ANN, and compare to
this in our proposed TSA-RBFNN gives the better result.
Sub plot 12 (b) signifies the cost comparison analysis of
TSA-RBFNN with CHO-RNN, compare to this in our
proposed TSA-RBFNN gives the better result. Figure 13
displays the cost comparison of TSA-RBFNN with existing
approaches. Here, the cost comparison of TSA-RBFNN and
the existing techniques like COA-RNN and EHO-ANN are
presented. When likened with existing techniques the cost of
proposed TSA-RBFNN technique is low.

Case 3: Absence of wind

In case 2, PV analysis of power generated is represented in
Figure 14. Sub plot 14 (a) depicts PV power of PV, and PV,
are analyzed in a day. When compared to the PV, and PV,,
PV, is better performing to PV,. Sub plot 14(b) implies
wind power of WT,; and WT, are analyzed in a day. When
compared to the WT, and WT,, WT, is better performing to
WT,. Sub plot 14(c) shows the battery charging and
discharging period in a day. Sub plot 14 (d) illustrates the
grid power; it attains the maximum power of 2.5 KW at 21
hrs in a day. Figure 15 delineates the training with testing
process of TSA-RBFNN technique in a day. Sub plot 15 (a)
depicts the PV, power testing and training, the maximum
testing occur 6 KW during the period of 12 hrs. The
maximum testing attains 6.2 KW at 12 hr per day. Sub plot
15 (b) depicts the PV, power testing and training, the
maximum testing occur 6.2 KW during the period of 13 hrs.
The maximum testing attains 6.2 KW at 13 hrs per day. Sub
plot 15 (c) defines the WT, power testing and training, the
maximum testing occurs 7.8 KW during the period of 18
hrs. The maximum testing attains 8 KW at 18 hrs per day.
Sub plot 15 (d) implicates the WT, power testing and
training, the maximum testing occur 7.6 KW during the
period of 12 hrs. The maximum testing attains 7.8KW at 12
hrs per day.
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Figure 16 depicts the individual power of PVy, PV, WTy,
and WT?2, battery and grid system. Sub plot 16 (a) shows the
individual power of ECO-ANN technique. The maximum
PV, power attains in 6 KW at 0-14 hrs in a day. PV, attains
the maximum power of 5.8 KW at 0-14 hrs per day. The
maximum WT, power attains in 7 KW at 0-14 hrs in a day.
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WT, attains the maximum power of 6.8 KW at 0-14 hrs in a
day. The battery charging time is 0-8 hrs, charged power
range is 5 KW at 6hrs. The battery discharge time is 8-15
hrs; it reached maximum discharged power is -5 KW at the
time period of 10 hrs. The maximum grid power attains in
2.5 KW at 20 hrs. Sub plot 16 (b) represents the individual
power of CHO-RNN technique. The maximum PV, power
attains in 6 KW at 0-14 hrs in a day. PV, attains the
maximum power of 5.8 KW at 0-14 hrs in a day. The
maximum WT, power attains in 7 KW at 0-14 hrs in a day.
WT, attains the maximum power of 6.8 KW at 0-14 hrs in a
day. The battery charging time is 0-8 hr, charged power
range is 5 KW at 6hrs. The battery discharge time is 8-15 hr;
it reached maximum discharged power is -5 KW at the time
period of 10 hrs. The maximum grid power attains 2.5 KW
at 20 hrs. Sub plot 16 (c) portrays the individual power of
TSA-RBFNN technique. The maximum PV, power attains 6
KW at 0-14 hrs in a day. PV, attains the maximum power of
5.8 KW at 0-14 hrs in a day. The maximum WT, power
attains in 7 KW at 0-14 hrs in a day. WT, attains the
maximum power of 6.8 KW at 0-14 hrs in a day. The
battery charging time is 0-8 hrs, charged power range is 5
KW at 6hrs. The battery discharge time is 8-15 hr; it
reached maximum discharged power is -5 KW at the time
period of 10 hrs. The maximum grid power attains 2.5 KW
at 20 hrs.
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Figure 17: Cost Comparison of proposed and existing technique
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Figure 18: Fitness comparison of proposed and existing technique

Figure 17 illustrates that the cost comparison of different
techniques. Sub plot 17 (a) indicates the cost comparison
analysis of TSA-RBFNN with EHO-ANN; when comparing
to this in our proposed TSA-RBFNN gives the better result.
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Sub plot 17 (b) signifies the cost comparison analysis of
TSA-RBFNN with CHO-RNN; when comparing to this in
our proposed TSA-RBFNN gives the better result. In Figure
18, the fitness comparison of TSA-RBFNN with existing
approaches is presented. Where, TSA-RBFNN approach in
the range of iteration is 38 whereas the fitness value is 0.53.
The existing COA-RNN technique in the range of iteration
is 39 whereas the fitness value is 0.54, then the existing
EHO-ANN technique in the range of iteration is 41 whereas
the fitness value is 0.55. When likened with the existing
approaches, the fitness of TSA-RBFNN approach is less.

Table 1: Statistical analysis of proposed and existing technique

Solution . Staf?d?rd
Techniques Mean Median Deviation
(SD)
TSA-RBFNN 0.4933 0.4867 0.0111
COA-RNN 0.5032 0.4940 0.0142
BFA-ANN 0.5095 0.4981 0.0159

Table 2: Elapsed Time

Solution approaches Elapsed Time(sec)
TSA-RBFNN 1.471046
COA-RNN 1.592524
BFA-ANN 1.871135

Table 1 tabulates the statistical analysis of TSA-
RBFNN with existing method. The mean value of TSA-
RBFNN technique is 0.4933, mean value of existing COA-
RNN technique is 0.5032 and BFA-ANN is 0.5095. The
median value of proposed TSA-RBFNN technique is
0.4867, mean value of existing COA-RNN technique is
0.4940 and BFA-ANN is 0.4981. The SD value of proposed
TSA-RBFNN technique is 0.0111, mean value of existing
COA-RNN technique is 0.0142 and BFA-ANN is 0.0159.
Table 2 shows the elapsed time for TSA-RBFNN with
existing technique. Here the elapsed time for TSA-RBFNN
technique is 1.471046, the elapsed time for existing COA-
RNN is 1.592524 and BFA-ANN is 1.871135.

6. CONCLUSION

This manuscript proposed a hybrid method for optimum
energy management of a grid-connected PV, wind turbine,
micro turbine including energy storage system using TSA-
RBFNN technique. Here, the system model and the
distribution of micro-grid with minimum effort using the
TSA-RBFNN technique. The TSA-RBFNN technique
chooses the allocation of micro-grid as represented by the
load requirement along less fuel cost, replacement and
operating cost. The advantages of the TSA-RBFNN
approach were improved local search capability, minimized
computation complex, randomness in generation, which
provides maximized accuracy of dimension. TSA-RBFNN
approach was examined for various load requirement
values, micro-grid configuration and the corresponding

Received on May 2020

annualized total costs were evaluated. The efficacy of the
TSA-RBFNN technique was analyzed using the comparison
of other existing approaches, such as COA-RNN and BFA-
ANN. Finally, the comparison outcomes prove that the
TSA-RBFNN technique was more proficient than the other
existing techniques.
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